
NOTATION 

V, velocity; P, pressure; p, density; x, r, e, axial, radialj and angular cylindrical 
coordinates; Tr, shear stress with respect to a surface perpendicular to r in the direction 
of the velocity vector V; Trx , ~re, projections of T r onto the x axis and the perpendicular 
to the x, r plane; dh, hydraulic diameter of the channel; G, mass flow rate; Fx, cross-sec- 
tional area of the channel perpendicular to the x axis; ~, hydraulic resistance coefficient; 
~, angle between the vector of the average gas velocity and the x axis; ~x = f(Rex), the 
quantity ~ for axial flow. 
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LAMINAR FLOWS OF A CONDUCTIVE LIQUID BETWEEN POROUS DISKS 

IN A TRANSVERSE MAGNETIC FIELD 

P. A. Novikov and L. Ya. Lyubin UDC 532.517.2:538.4 

We investigate the influence of a transverse magnetic field on the self-similar 
axisymmetric flows of a viscous conductive liquid between permeable disks. 

The flow of a conductive liquid in a plane channel with permeable walls under the influ- 
ence of a transverse magnetic field has been studied in [i]. A self-similar solution of the 
problem valid for any Hartmann numbers M was obtained in the form of a regular expansion in 
powers of a small parameter; the parameter used was the Reynolds number R, calculated on the 
basis of the velocity of injection or suction. Later studies [2, 3] dealt with the corre- 
sponding flows in the case of intensive symmetric bilateral injection~ with large negative 
values of R and small values of the parameter ~ = M=/R. An asymptotic analysis of the effect 
of the magnetic field on flows in a plane channel that were produced by introducing the con- 
ductive liquid through one of s walls and removing it through the other, in nearly asymmet- 

ric regimes, was carried out in [4]. 

The behavior of a conductive liquid that occupies a half-space bounded by a rotating 
permeable disk (of infinite radius) was studied in [5], where, in particular, it was shown 
that there exist self-similar flows whose radial velocity component u and axial velocity 
component w, as in the case of flows of a nonconductive viscous liquid around an impermeable 
rotating (or motionless) disk, discovered more than 60 years ago by Karman [6], can be repre- 
sented in the form 

The flows considered here are caused not by the rotation of the disk but by the suction 
or injection through the permeable walls. Therefore, the quantity we have used here as the 
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scale of velocity is w, equal to the axial velocity on one of the disks, i.e., as in the 

analysis of flows of a nonconductive liquid [7-10] 

I r z 
u -  ItvIY(0, w =  [W[/(~), ~ = ~ .  (2) 

2 h h 

Here  2h i s  t h e  d i s t a n c e  b e t w e e n  t h e  d i s k s .  As i n  [ 1 - 5 ] ,  t h e  i n f l u e n c e  o f  t h e  p o n d e r o m o t i v e  
f o r c e s  i s  t a k e n  i n t o  a c c o u n t  i n  t h e  m a g n e t o h y d r o d y n a m i c  a p p r o x i m a t i o n .  M o r e o v e r ,  i t  i s  a s -  
sumed t h a t  t h e  e l e c t r o m a g n e t i c  f i e l d  i n d u c e d  by t h e  m o t i o n  o f  t h e  c o n d u c t i v e  l i q u i d  i s  n e g -  
l i g i b l y  s m a l l ;  t he  m a g n e t i c  R e y n o l d s  number  Re~ i s  a l s o  s m a l l .  

Thus ,  i n  t h e  c a s e  u n d e r  c o n s i d e r a t i o n ,  i t  i s  s u f f i c i e n t  to  add co t h e  N a v i e r - - S t o k e s  
e q u a t i o n s  a t e r m  j x B = - - ~ B i u ( r ,  ~ )~o ,  c h a r a c t e r i z i n g  the  mass  p o n d e r o m o t i v e  f o r c e ,  i . e . ,  
to write 

Ou Ou 1 OP 1__[_ oB 'u  -~- "o (ru) + , 

oo oo [ , o ( o §  o o] 
u + w - - = -  r + ( 3 )  

Or Oz p Oz Jr v -- r T az"- 

0_Z_u+__u + __Ow =: 0. 
Or r Or 

Consequently, the unknown function f(~) must satisfy the equation 

f f "  __ R IH"  - -  ---~ "'2 ) - -  M~[' ~ k. (4) 

If w is taken on the surface of the lower disk (z = 0, ~ = 0) and is considered positive 
for injection, and the axial velocity on the surface of the upper disk (z = 2h, ~ = 2) is 
w(ih) = • then the function f(~) must satisfy the following boundary conditions: 

/(0) = signW, [ ' (0)  = 0, f(2) = %, [ ' (2)  = 0. (5) 

The second and fourth conditions reflect the absence of slippage on the surface of the disks. 

The flow between the permeable disks at low suction and injection rates (small in the 
modulus of the Reynolds numbers R) will be the same as in flows of a conductive liquid in a 
plane channel with impermeable walls, which were studied by Hartmann [Ii] or, more precisely, 
of the Hele--Shaw type of flows of a conductive liquid in slit-type channels [12]o In connec- 
tion with this, it is interesting to consider flows corresponding to high suction and injec- 
tion rates (IRI >> I). 

As was shown in [9], the nature of the asymptotic behavior (the number, thickness, and 
position of boundary layers) of self-similar flows of a nonconductive liquid between perme- 
able disks depends on the numbers R and RI = xIRI. To illustrate the influence of the mag- 
netic field, we should select regimes included in region 2 of the diagram constructed in [9]. 
The flows corresponding to this region are flows which arise in the case of intensive suction 
through one disk (for example the lower disk) and injection at any intensity through the other 
(upper) disk, so that R >> I, RI << 0. These regimes are distinguished by the fact that the 
distribution of velocities along the height of the gap is most nonuniform when M = 0 and in 
the limit (R § ~) we obtain a linear distribution corresponding to the line segment connect- 
ing the points ~ = 0, f' = ! and ~ = 2, f' = 0. It is natural to expect that such flows will 
be particularly sensitive to the apparent "magnetic viscosity" caused by the action of the 
transverse magnetic field on the conductive liquid. 

The application of a magnetic field leads to the separation of regimes which are quali- 
tatively uniform for M = 0 into two classes which, by analogy with the flows of a noncon- 
ductive liquid in a plane channel, considered in [13], can be designated as "mixed suction" 
and "mixed injection," respectively. 

When k = const, Eq. (4) can be simplified by differentiating with respect to ~. As a 
result, for large values of R we obtain the following singularly perturbed equation: 

f / ' " +  ~f"--s/v = O. ( 6 )  
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Here 

= M ~ / R ,  ~ = 1 / R .  (7) 

When the inequalities 

are satisfied, the solution of the shortened equation 

( 8 )  

f f ' "  + ~f" = o, ( 9 )  

according to the terminology used in [14], will be stable to the right. Therefore, as in the 
case M = 0 (~ = 0), considered in [9], a boundary layer having a thickness of the order R -~ 
and characterized by a steep increase of the radial component of the velocity, will exist 
only at the lower disk, and the problem can be solved by splicing the outer and inner asymp- 
totic expansions. The external solution for the region 0 < ~ < 2 is sought in the form of 
an expansion in integral powers of the small parameters ~ and ~: 

It must satisfy the last two boundary conditions of (5), i.e., 

(io) 

F o, (2) = z ,  F o~" (2) = o. 

A suitable asymptotic expansion of the solution in the interval I0, 2 I 
in this case in the form 

(II) 

can be written 

f(~, ~, ~)= f,o)(~, ~, , ) + ~ H f f ( n ) + . .  " (12) 

Here we use the elongation transformation n = ~/E = R~ at the point ~ = 0; the boundary 
functions are ~jf(n) § 0 as ~ + ~. 

By virtue of inequalities (8), the first term of expansion (I0) must satisfy the equa- 
tion 

,,r 

:o = 0 (13) 

and the boundary conditions 

i.e., as in the case M = 0 [9], 

and, correspondingly, 

[o (0) = --.1, [o (2) = %, [o (2) = O, 

f o ( 0 = % - - •  @ )  

(14) 

(15) 

H l f O 1 )  = 2• • = %-----'+~1 (16) 
2 

For the second term of the external expansion, we can write the following equation: 

dZfl l  _ _  1 d ~ f ~ ~  - -  2• (17) 
d~ 3 fo d~ 2 --2 +4•215 ~ 

Depending on the value of the parameter <o, the first integral of this equation can be 
represented by one of the following three formulas [15]: 

[ ] ' i =  • In l;2~%0%--• -~C~ ( •  (18) 
l < ~ z  g ~ o Z  + • (2- -  ~) \x < o ' 

2• arctg •176  +C~ ( 0 < • 1 7 6  (19) 
f]'i ff--2• 1/--2• \ - -  1 < Z < 0 ] 

t;, : 2----C- + ci' o . (2o) 
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The first formula corresponds to flows with "mixed injection," when X < --i (< < 0), the 
second to flows with "mixed suction," when --i < X < 0 (0 < ~ < 1/2). The last formula cor- 
responds to degenerate regimes of flow which arise when there is no injection (X = 0, ~ = 
1/2). The second degenerate regime < = 0, X = --i, corresponding to the trivial solution 
fan(5) = 0, is of no interest, since the magnetic field under consideration has no effect 
on the purely axial flow of a conductive liquid. 

Thus, three qualitatively different regimes of flow must be considered separately. 
Double integration of the expressions (18) and (19), using the homogeneous boundary conditions 

f~z(O) = O, fu(2)  = O, fl ,  (2) = 0 (21) 

leads to the following results: i) mixed injection 

/~'1i(~):[ 1-1n(1-4E")-~ 1~-4E24~ In 11--2k+2~ %ln l l - - E ( 2 - - ~ ) ]  ( 2 - ~ ) + l n [ 1 - E ~ ( 2 - ~ ) q ' Q - E ( 2 - 4 )  

f l ,  ( 4 )  = { 1 - -  m [1  - -  ~ ( 2  - ~ ) ~ 1 } ( 2  - -  4 )  - -  (22) 

_ F l _ l n ( l _ 4 ) ~ 2 ) + .  1 - K 4 1 ~ l  n 1 -21~  ] { 2 - ~ )  ~ + 1-}-E"-(2-~)  ~ in 1 - - % ( 2 - - ~ )  
[ 

2) mixed suction 

fll  (E)-- {1 --In(l -~ 4~}) -}- .... 1 --2~.4~J" arctg 2), -- 2k arctg [k (2 -- 4)1}(2 -- ~) -i- 

/11 (4) = { 1 - - -  In [1 -~- ,%0 (2 - -  ~)~]}(2 - -  4) --- (23) 

-- [ I -- In (I ~ 4k ~) - 1 --2% 4%~ arctg 2%] (2 --2 ~)~ 1 -- ~ )~(2 -- ~)~ arctg [~ (2 -- 4)] 

[in (22) and (23) we use the dimensionless parameter ~ = fKKo/2X]; 3) unilateral suction. 

Formal integration of Eq. (20) yields the following expressions: 

f~l (4) ---- 2 In (2 - -  4) - -  C'~ (2 - -  ~), 

fn  (~) ---- 2 (2 - -  4)[1--1n (2 - -  ~) q- C] (2--~)~ 4 ( 1 - - 1 n 2 ) - - 2 C ~ .  
2 

(24) 

The last solution satisfies only the first two boundary conditions of (21). At the point 
5 = 2, the derivative f'~(~) has a logarithmic singularity, and the corresponding solution 
can be harmonized with the last boundary condition of (21) only by introducing the special 
boundary function Qf, which is essential only in a small neighborhood of the point ~ = 2. 

Thus, as X + 0, a moderate magnetic field (Ma/R << I) leads to the appearance of a mag- 
netohydrodynamic boundary layer in a neighborhood of the impermeable wall. When there is 
unilateral suction of a nonconductive liquid, no boundary layer is formed at this wall [9]. 

Figure la shows the profiles of the function f'11(~)/K, calculated by formulas (22) and 
(23) for flow regimes with "mixed suction" (• = --1/2, K = 1/4) and with "mixed injection" 
(• = --3/2, --3; K = --1/4, --I). This function characterizes the perturbation of the triangular 
distribution of the radial velocity component (as R § =, f(5)/X + 2 -- 5) of a conductive 
liquid as a result of the application of a transverse magnetic field. 

As in the flow of a conductive liquid in a plane channel with nonpermeable walls, studied 
by Hartmann [Ii], or in Hele--Shaw flows of a conductive liquid between parallel plates [12], 
the magnetic field leads to an apparent "magnetic viscosity~" which makes possible the equal- 
ization of the radial-velocity profile along the height of the gap. Other conditions being 
equal, this effect is particularly sensitive as X -7 0; with "mixed suction" it is more pro- 
nounced than with "mixed injection." The particularly strong influence of the magnetic field 
on flows of a conductive liquid which corresponds to practically unilateral suction is due to 
the fact that in these regimes the main mass of the liquid enters any annular cross section 
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x 

0 

Fig. i. a) Profiles of the functions f'**(~)/< (i, X = --1/2, 

< = 1/4; 2, X = --3/2, < = --1/4; 3, X = --3, < = --i) and b) 
graph of the deformation of the triangular distribution of radi- 
al velocities of a conductive liquid along the height of the gap 
(i, M2/R = 0; 2, M2/R = I for X = --3, ~ = --I). 

0 

~-- f'l 

q e : l l  

c, o 
Fig. 2. Character of the distribution of the radial velocities 
of a conductive liquid in a magnetic field: a) under injection 
(i, ~ = 0, R = --24; 2, ~ = --2.67, R = --26; 3, ~ = 3.63, R = 
--23.8; 4, ~ = --5.44, R = --25); b) under suction (i, p = 2.7, 
R = 12; 2, ~ = 3.2, R = 13.6; 3, ~ = 3.9, R = 12). 

-5 0 5 

/ 3  
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! 
/0 R 

Fig. 3. Pressure gradient Z as a function of R for different 
magnetic-field densities: !) M2/R = 20; 2) 20.5; 3) 21.0; 4) 
21.5; 5) *2; 6) !2.5; 7) 23; 8) 23.5; 9) 24; i0) 24.5. 

from the periphery, after having traveled a relatively long distance through the lines of 
force of the field. Figure ib shows how the magnetic field deforms the triangular distribu- 
tion of radial velocities of the conductive liquid corresponding to the limiting regimes 
(R § =) along the height of the gap for relatively small values of ~ = M=/R (X = --3, K = --i, 
p = i). 
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In conclusion, we shall discuss the numerical analysis of those degenerate regimes of 
flow of a conductive liquid in an interdisk gap that are of the greatest interest. These 
are the flows arising in the case of unilateral injection or suction. As shown by the above 
case of unilateral suction (R >> i, X = 0, ~ = 1/2), when there are ponderomotive forces, 
these regimes are even more suitable for asymptotic analysis than in the case of a noncon- 
ductive liquid. On the other hand, a study of all possible self-similar flows of the type 

(i) with unilateral suction and injection reduces, in general, to a two-parameter analysis 
(this refers to the pressure gradient K and the magnetic parameter p), for the numerical 
realization of which it is advisable to replace the nonlinear boundary-value problem (4), 
(5) with the Cauchy problem: 

1 F,2 F ' " - - ~ F ' q -  -if- - - F F  = K, (25)  

F(O) = O, F ' (O)= O, F"(O)= (--1)  n. (26)  

Here the primes denote differentiation with respect to the new dimensionless variable ~ = 
b~, and the function F is defined by F(~:) = A-If(~). It is assumed that 

b k 
A = R, b'A = (- -1)  n, - ~  = K. (27)  

We as sume  t h a t  t h e  l o w e r  d i s k  (5 = 0) i s  n o n p e r m e a b l e  and  t h e  R e y n o l d s  number  R = wh /v  
i s  c o n s t r u c t e d  on t h e  b a s i s  o f  t h e  a x i a l  v e l o c i t y  on t h e  u p p e r  d i s k  (~ = 2 i s  c o n s i d e r e d  
positive when there is suction). For the numerical analysis of flows caused by introducing 
a liquid through a permeable wall, we must take n = I, and the pressure gradient K must be 
varied between the limits 0 and =. In the analysis of suction, n = 0 and K is varied from 
--~ to O. 

Equation (25) is integrated to the second zero of the function F'(~i): F'(sij) = 0, 
5~ = 0, ~2 corresponds to the permeable wall, after which the main parameters characteriz- 
ing the flow regime are calculated by using the formulas 

1 k~12 ~12 ~12~ 
R = --ff ~ l~F (~,~), n - 2 P  ( ~ 1 ~  ' M - -  2 ~ '  ~ - F (~) 

Here the pressure gradient is ~ = --8ha(aP/ax)/pvW~. The profiles of the dimensionless radial 
velocity component are obtained by the affine transformation ~ = 2~/~1a, f'(~) = ~aF'(~I)/ 
2F(~Ia). 

Figure 2 shows how the magnetic field deforms these profiles in the case of injection or 
suction through the upper disk. The apparent "magnetic viscosity" facilitates the equaliza- 
tion of the f'(~) profile and the appearance at large values of the parameter ~ = M2/R of 
magnetohydrodynamic boundary layers on both walls of the gap. As p increases, this layer 
appears first at the permeable disk in the case of injection and at the nonpermeable disk in 
the case of suction, i.e., at the place where for ~ = 0 there was no boundary layer at all, 
which, in particular, confirms the deduction made above in the asymptotic analysis of the de- 
generate case • = 0. To the limiting regimes ~ = • R ~ 0 there correspond the rectangu- 

lar profiles f'(~) = 1/2. 

In order to clarify the variation of the pressure gradient ~ as a function of the param- 
eter p and the Reynolds number R, we first constructed auxiliary diagrams: N = ~(R, K), ~ = 
IJ(R, K) for different fixed values of K. These diagrams enable us to construct the graphs 
of ~ = H(R, ~) for p = const (Fig. 3). It can be seen that the magnetic field increases the 
hydraulic resistance both under injection and under suction, whereas for p = 0 and R + = it 
tended to zero. 

NOTATION 

r, z, cylindrical coordinates; Oz, axis of rotation of the disk; m, angular velocity of 
the disk; v, coefficient of kinematic viscosity of the liquid; Re o = oBh, magnetic Reynolds 
number; o, electrical conductivity of the liquid; B, modulus of the magnetic-induction vector; 
h, width of the slot; P, pressure; R = wh/v, Reynolds number; M = Bh/o/pv, Hartmann number; 

--O 
k, proportionality constant; z , unit vector with radial direction. 
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